297 research outputs found

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance

    Acting rehearsal in collaborative multimodal mixed reality environments

    Get PDF
    This paper presents the use of our multimodal mixed reality telecommunication system to support remote acting rehearsal. The rehearsals involved two actors, located in London and Barcelona, and a director in another location in London. This triadic audiovisual telecommunication was performed in a spatial and multimodal collaborative mixed reality environment based on the 'destination-visitor' paradigm, which we define and put into use. We detail our heterogeneous system architecture, which spans the three distributed and technologically asymmetric sites, and features a range of capture, display, and transmission technologies. The actors' and director's experience of rehearsing a scene via the system are then discussed, exploring successes and failures of this heterogeneous form of telecollaboration. Overall, the common spatial frame of reference presented by the system to all parties was highly conducive to theatrical acting and directing, allowing blocking, gross gesture, and unambiguous instruction to be issued. The relative inexpressivity of the actors' embodiments was identified as the central limitation of the telecommunication, meaning that moments relying on performing and reacting to consequential facial expression and subtle gesture were less successful

    Prep1 (pKnox1) transcription factor contributes to pubertal mammary gland branching morphogenesis

    Get PDF
    Prep1 (pKnox1) is a homeodomain transcription factor essential for in utero and post-natal development and an oncosuppressor gene in human and adult mice. We have analyzed its role in the development of the mouse mammary gland. We used Prep1i/i hypomorphic and Prep1F/F-Ker5CRE crosses to analyze the role of Prep1 in vivo in adult mouse mammary gland development. We also cultured mammary gland stem/progenitor cells in mammospheres to perform biochemical studies. Prep1 was expressed in mammary gland progenitors and fully differentiated mammary gland cells. Using different Prep1-deficient mouse models we show that in vivo Prep1 contributes to mammary gland branching since the branching efficiency of the mammary gland in Prep1-deleted or Prep1 hypomorphic mice was largely reduced. In-vitro, Prep1 sustained functions of the mammary stem/progenitor compartment. Prep1-deficient mammary stem/progenitor cells showed reduced ability to form mammospheres; they were not able to branch in a 3D assay, and exhibited reduced expression of Snail1, Snail2 and vimentin. The branching phenotype associated with increased Tp53-dependent apoptosis and inability to properly activate signals involved in branching morphogenesis. Finally, Prep1 formed complexes with Snail2, a transcription factor essential in branching morphogenesis, and its absence destabilizes and promotes Snail2 proteasome-mediated degradation. We conclude that Prep1 is required for normal adult mammary gland development, in particular at its branching morphogenesis step. By binding Snail2, Prep1 protects it from the proteasomal degradation

    po 466 pi3k c2a regulates mitotic spindle assembly and chemotherapy response in breast cancer

    Get PDF
    Introduction Proper organisation of the mitotic spindle is key to genetic stability but the molecular components of inter-microtubule (MT) bridges that crosslink kinetochore fibres (K-fibres) are still largely unknown. Here, we identify class II phosphoinositide 3-OH kinase a (PI3K-C2α) as a limiting scaffold protein organising the clathrin and TACC3 complex crosslinking K-fibres. Material and methods Pik3c2a+/- mice were intercrossed with a transgenic strain expressing the activated HER-2/Neu oncogene in the mammary gland. Mice were weekly followed for survival, tumour appearance and growth. Primary Murine Mammary Epithelial Tumour (MMET) cells were derived from early and late stage tumours. Truncating PI3KC2α mutants were generated and interaction with TACC3 was tested. Levels of PI3K-C2α expression were assessed by IHC in breast cancer tissue microarrays (TMA) and correlated with response to chemotherapy. Results and discussions Loss of PI3K-C2α expression is a frequent occurrence in breast cancer patients (48%) and correlates with local recurrence and metastatic disease. The heterozygous loss of PI3K-C2α initially delays tumour onset but, on the long run, leads to the convergent evolution of aggressive clones with mitotic checkpoint defects. In line with this, downregulation of PI3K-C2α promotes spindle alterations and aneuploidy, indicating that PI3K-C2α expression is a key determinant of genomic stability. As a consequence of the altered spindle, reduction of PI3K-C2α expression increases the sensitivity to anti-MT drugs, such as paclitaxel, in pre-clinical models and in breast cancer patients. Conclusion Loss of PI3K-C2α expression is a frequent occurrence in breast cancer patients (48%) and correlates with local recurrence and metastatic disease. The heterozygous loss of PI3K-C2α initially delays tumour onset but, on the long run, leads to the convergent evolution of aggressive clones with mitotic checkpoint defects. In line with this, downregulation of PI3K-C2α promotes spindle alterations and aneuploidy, indicating that PI3K-C2α expression is a key determinant of genomic stability. As a consequence of the altered spindle, reduction of PI3K-C2α expression increases the sensitivity to anti-MT drugs, such as paclitaxel, in pre-clinical models and in breast cancer patients

    IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules

    Get PDF
    It is unclear whether the establishment of apical\u2013basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8. Using correlative light and electron microscopy, we further show that IRSp53 ensures the shape and continuity of the opposing plasma membrane of two daughter cells, leading to the formation of a single apical lumen. Genetic removal of IRSp53 results in abnormal renal tubulogenesis, with altered tubular polarity and architectural organization. Thus, IRSp53 acts as a membrane curvature-sensing platform for the assembly of multi-protein complexes that control the trafficking of apical determinants and the integrity of the luminal plasma membrane

    IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules

    Get PDF
    It is unclear whether the establishment of apical–basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8. Using correlative light and electron microscopy, we further show that IRSp53 ensures the shape and continuity of the opposing plasma membrane of two daughter cells, leading to the formation of a single apical lumen. Genetic removal of IRSp53 results in abnormal renal tubulogenesis, with altered tubular polarity and architectural organization. Thus, IRSp53 acts as a membrane curvature-sensing platform for the assembly of multi-protein complexes that control the trafficking of apical determinants and the integrity of the luminal plasma membrane

    Radioablation +/- hormonotherapy for prostate cancer oligorecurrences (Radiosa trial): Potential of imaging and biology (AIRC IG-22159)

    Get PDF
    Background: Prostate cancer (PCa) is the second most common cancer among men. New imaging-modalities have increased the diagnosed patients with limited number of metastasis after primary curative therapy, introducing so-called oligometastatic state. Stereotactic body radiotherapy (SBRT) is emerging as a low-toxicity treatment to erase PCa localizations and postpone androgen deprivation therapy (ADT). A deeper understanding of the predictive role of biomarkers is desirable for a targeted treatment selection and surveillance programs. The aims of the RADIOSA trial are: Compare SBRT +/- ADT for oligorecurrent-castration-sensitive PCa (OCS-PCa) in terms of efficacy, toxicity and Quality of Life (QoL).Develop biology/imaging based prognostic tool that allows identifying OCS-PCa subclasses. Methods This is a randomized phase II clinical trial, recruiting 160 OCS-PCa in 3years, with progression-free survival (PFS) as primary endpoint. Three tasks will be developed: Randomized clinical study (3years for accrual and 2years for follow-up and data analysis);Imaging study, including imaging registration and METastasis Reporting and Data System (MET-RADS) criteria;Pre-clinical study, development of a biobank of blood samples for the analysis of neutrophil-to-lymphocyte ratio and preparatory for a subsequent miRNA profiling.We aim to determine which arm is justified for testing in a subsequent Phase III trial. A decision-tree algorithm, based on prognosis, biological phenotype and imaging profile, will be developed. Discussion Recruiting will start in July 2019. SBRT will allow obtaining excellent PFS, local control, QoL and low toxicity. In SBRT arm, ADT deferral will allow for a drug-holiday, delaying the detrimental impact on QoL. A sufficient number of blood samples will be collected to perform biological patient profiling. A stratification tool will be established with an analysis of morphological and functional imaging, based on the use of MET-RADS criteria.So, in conclusion, RADIOSA aims to define the optimal management of bone/nodal PCa relapses in a SBRT regimen. This study will increase our knowledge on low-burden metastatic PCa in the era of high precision and high technology personalized medicine, offering highly effective therapy in terms of clinical outcome and cost-effectiveness. Trial registration The RADIOSA study was prospectively registered at clinicaltrials.gov (NCT03940235, May 2019)
    • …
    corecore